
BlockyTalky: A Low-Cost, Extensible, Open Source,
Programmable, Networked Toolkit for Tangible Creation

Elise Deitrick
Tufts University
Medford, MA

elise.deitrick@tufts.edu

Joseph Sanford
Tufts University
Medford, MA

joe@cs.tufts.edu

R. Benjamin Shapiro
Tufts University
Medford, MA

ben@cs.tufts.edu

ABSTRACT
BlockyTalky is a low cost software and hardware toolkit
that enables users to create their own networked devices.
The platform may be used to create devices that interact
purely in the physical world, such as autonomous robots,
or that bridge the virtual and physical worlds, such as de-
vices that provide a tangible, interactive representation of
data from social networks. BlockyTalky provides users with
a web-based visual programming environment hosted on a
Raspberry Pi, and a cloud service allows users’ creations to
communicate with one-another, as well as other web ser-
vices, over the Internet. Support for the BrickPi shield of-
fers interoperability with LEGO NXT motors and sensors,
and therefore a gradual pathway for learners from LEGO to
more advanced computation and engineering. BlockyTalky
enables users to learn introductory programming principles,
basic robotics, and networked communication as they build
custom devices.

Categories and Subject Descriptors
H.5.2 [Information Systems and Presentation]: Proto-
typing

General Terms
Design, Human Factors

Keywords
Tangible, Programming, Network

1. INTRODUCTION
Researchers have created a number of technologies and

teaching approaches to broaden participation in computing.
For example, Storytelling Alice [5], LilyPad Arduino [3], and
Scratch [14] are programmable environments engineered to
attract a broad range of learners to computing through sto-
rytelling, crafting, and game design. These technologies con-
nect to youths’ existing interests and participatory cultures,

IDC 2014
June 17-20 2014
Aarhus, Denmark
www.idc2014.org
All rights retained by the author(s).

Figure 1: How BlockyTalky builds on existing sys-
tems to bridge gaps in engineering trajectories.

and offer youth the opportunity to produce work that is
meaningful to themselves and their peers [1, 10, 12].

Paradoxically, the success of these efforts to broaden par-
ticipation in computing has created a problem for learners:
frequently these environments lack depth in computer sci-
ence learning. Students write simple programs that utilize
a limited range of computer science ideas (variables, con-
ditional logic, loops, and, sometimes, procedural abstrac-
tions). These are exciting first steps, but when learners
max out these introductory environments, there are no clear
paths for them to follow to deepen their skills. Further, there
is a significant gap between the abstractions and simplifica-
tions found in many of these introductory systems and in
the formal and informal computer science educational ma-
terials and tools that learners can find in schools or online to
reach more advanced levels. We believe that the scaffolded
approach to computing that environments like Scratch and
LilyPad represent will only be successful in the long term if
researchers in our field also create bridges between introduc-
tory experiences in computing and more advanced ways of
participating. Moreover, because scaffolding must, by def-
inition, fade away [11, 4], we must create mechanisms to
gradually pierce the simplifications and abstractions that
beginning environments present (Figure 1).

Consider the following example of what the current state-
of-the-art enables: Jane gets excited about Scratch because
it will let her make a video game she has dreamed up. She
creates the game and her friends at school love it and ask
her to add a leaderboard to track the best scores. She does.
When she posts the game online she discovers that many
people on the Scratch Online community enjoy her game,
but her leaderboard doesn’t work anymore because it’s not
just on her computer. An online friend suggests that she

check out the Cloud Variables that are part of Scratch 2.
She modifies her leaderboard using this approach, and now
players’ high scores are synchronized between all players of
her game.

Now, suppose Jane gets curious about how those Cloud
Variables work and where else they are used in computers.
Do they work in the same way that her iPhone is able to
show her the weather from places around the globe? What
about how Twitter Direct Messages show up on her phone
and on her computer? Are they all just using Cloud Vari-
ables? And how does the data stored in those variables get
synchronized between all of those places?

Jane has no obvious way to find answers to these ques-
tions, let alone implement new systems using the relevant
computing techniques. There is an unmet need to create
next steps in computing for interested beginners like Jane:
they need opportunities to see how the abstraction that
Cloud Variables presents actually functions, and to under-
stand what the mechanisms are that relate Cloud Variables,
weather apps, and multi-device-synchronized instant mes-
saging.

2. OUR APPROACH
We believe that creating networked physical devices and

virtual services – nodes that participate in a distributed In-
ternet of Things – can be a powerful way to offer learners
the kinds of next steps just called for.

Why Networks and Distributed Systems?
It is essential that we create learning opportunities and pro-
cesses in computer science that are situated in the kinds of
problems, media, cultures, and communities that youth al-
ready know and care about. Responding to such interests and
backgrounds is the central principle of culturally-responsive
pedagogy [6, 7]. And yet, there exists a deep well of youth in-
terest that has yet been tapped into by computing education
researchers: participation in and use of networked services,
communities, and devices. 95% of American teens now use
the Internet, and 47% of American teens have smartphones.
Moreover, the rate of teen smartphone ownership is fairly
stable across bands of family income (39% for teens in fam-
ilies with income less than $30,000/year vs 43% in families
with income greater than $75,000/year). Meanwhile, 93%
of teens own or have access to desktop/laptop computers
and 81% of teens use social media sites like Facebook and
Twitter [9, 8].

In short, today’s youth, regardless of race, gender, and
income, use a heterogeneous mixture of online services and
devices. They make daily use of networks and distributed
computing in order to connect with friends, play games, and
find information. The programmed properties of different
social media systems have powerful impacts on the ways
that youth are able to connect, present their identities, and
manage conflict with peers; differences between system de-
sign decisions embedded in these technologies are of great
personal importance to many youth and are systems that
they already think about in nuanced ways [2].

The deep importance of these networked, distributed sys-
tems to youths’ daily lives offers an unprecedented opportu-
nity to motivate and situate learning about advanced topics
in computer science. Just as Scratch taps in to storytelling
and games, we should create environments that enable youth
to build new technologies that are deeply connected to the
Internet. Doing so would create an opportunity for learn-

ers to encounter and apply a variety of computer science
ideas and techniques around distributed computing, net-
works, and parallel computing.

These ideas feature prominently in recent standards like
the joint ACM-IEEE Computer Science Curricula 2013 which
highlights the need for learning about the following topics:

• Abstraction
• Specification of interfaces
• Internet organization and terminology
• Networked, client-server, and distributed communica-

tion
• Security
• Task, data, and event parallelism
• Asynchronous and synchronous communication
• Reliable and unreliable protocols
• The need for concurrency in operating systems
• Web services
• Race conditions and consistency
• Partial failures, partitions, and other problems of dis-

tributed systems.
Building networked technologies for social connection would
enable youth to learn these skills while making things that
would be of great personal and cultural relevance.

Why Networked Physical Devices? As noted above,
youth connect online using a variety of devices and appli-
cation types, ranging from mobile phones to laptops, and
from web browsers to social network apps and games, re-
spectively. They request data from web services anchored to
physical devices, such as weather data fed by thermometers
and wind meters and fed by databases. They play games on
consoles hooked to TVs and guide their characters through
those games using handheld controllers. In the coming years,
household devices will be increasingly connected to the web
as well, with today’s networked thermostats and refrigera-
tors signaling a burgeoning Internet of Things that pervades
daily life.

The growing ubiquity of these connected devices and ser-
vices is an opportunity to support next steps in computer
science education: first by building on the remarkable suc-
cess of physical computing in providing many youth an entry
point into computer science, then by enabling youth to con-
nect their physical inventions up to the web so that they can
connect their own devices together and connect their inven-
tions with others’. We call this class of student-invented
technology Connected Devices and the work that goes into
making them Connected Engineering.

We hypothesize that the opportunity to invent Connected
Devices will motivate participants to learn powerful CS ideas
like parallelism, distributed systems, networks, and web ser-
vices. Examples of such projects could include ambient in-
terfaces to social media, sensor networks that capture data
about local air quality, home or classroom automation, and
tools to keep in touch with distant relatives or care for pets.

3. SYSTEM DESCRIPTION
BlockyTalky offers a unique mix of low cost and usability

that lowers both the financial and the instrumental barriers
to entry to physical computing. BlockyTalky is an open-
source software project that can run on any device capa-
ble of running Linux and Python. It is most readily used
on Raspberry Pi hardware costing about $35 per device.
We usually pair each Pi with a BrickPi ($60), which al-
lows the system to inter-operate with LEGO sensors and

Figure 2: The BlockyTalky visual programming in-
terface

motors, thereby reducing the practical barrier to entry in
device construction by enabling prototyping with plug-and-
play sensors and motors. This toolkit supports the kinds of
activities that have already proven successful in educational
electronics and robotics (e.g., robotics competitions), but
also supports the realization of thus-far broadly inaccessible
project ideas, such as networked tangible games and toys,
electronic musical instruments, and ambient representations
of social network, weather, and scientific data. We wish to
support users’ creation of these technologies using a vari-
ety of materials, from commercially available systems like
LEGO to combinations of 3D printed and craft materials.
One example project, a remote cat treat dispenser, can be
seen at http://youtu.be/osmJIX7HZic, and its program is
presented in Figure 2.

A user begins by connecting to the BlockyTalky unit in
his/her web-browser, which takes the user directly to the vi-
sual programming environment hosted on the unit. The pro-
gramming interface is blocks-based (based on Google Blockly),
much like Scratch, Alice, and App Inventor (which also uses
Blockly, creating future opportunities for youth to build ap-
plications that span invented physical devices and mobile
phones). We believe this will enable users to easily tran-
sition from other introductory environments to new kinds
of programming projects. These projects can be rooted in
their physical environments, using sensors, motors, lights,
and speakers, or deeply connected to the web, such as by
responding to events on social media or sending messages to
other users’ devices. Because it offers an easy, familiar in-
terface learners can begin programming physical, networked
devices, without wrestling with the intricacies of text-based
programming, while also gaining entree to a variety of low-
cost, open source hardware. This supports students’ pro-
gression beyond introductory skills by offering a pathway
for gradual deepening of skills from what they already know
(relatively-simple blocks-based programming) into new ter-
ritories for learning (networks and hardware design).

We are developing a system to bridge this gap created
by introductory environments. To address this problem, we
want to ensure that our tool is scalable within K-12 educa-
tion. Using the heuristics set forth for scalable game design
[13], we can evaluate if our system:

• Has a Low Threshold
• Has a High Ceiling

Figure 3: Students working with the BlockyTalky
system using LEGO.

• Scaffold Flow
• Enable Transfer
• Supports Equity
• Systematic and Sustainable

By using a blocks-based interface, we create a low thresh-
old which allows users to piece together programs in seconds.
As described above, not only is the programming environ-
ment a snap, but the networking component of the system
described above allows students to reach computational con-
cepts beyond the scope of most novice-friendly systems, cre-
ating a relatively high ceiling. Due to the graphical nature
of the system, users can explore complex concepts within
a language free of syntax worries, allowing users to move
at their own pace and in their own direction with little di-
rect instruction. By connecting to hardware that is also
programmable in text based languages, when a user does
reach the ceiling of our system she or he can use the com-
putational concepts they have learned as well as all her/his
knowledge of the hardware (and the hardware itself) to cre-
ate even more sophisticated inventions. BlockyTalky’s main
new affordance is an easy to use abstraction for network-
ing, which should enable it to be used for project types that
are more broadly attractive, unlike some other platforms
(such as LEGO NXT) that are best suited to robotics and
have largely attracted boys. Lastly, due to its low cost, wide
availability, and open source nature, schools can order whole
classroom sets at one time as well as customize the system
to their needs.

4. DEMONSTRATION OVERVIEW
Participants in a 30 minute demonstration will be able

to vote on an assortment of tasks to complete including:
making an ambient representation of social media, creating
controllers for a multi-player game (such as Simon or Rock-
Paper-Scissors) to battle each other, and a musical instru-
ment or sound effects board. These fun and youth-inspired
tasks will show participants how these networked devices are
both easy to use and powerfully open-ended. LEGO pieces,
including NXT motors and sensors, will allow participants
to snap together any necessary hardware for their devices
in minutes. Through their use of BlockyTalky they will be
exposed to many powerful computational concepts, such as
asynchronous communication, without having to go beyond

Figure 4: Car built with the BlockyTalky system
and LEGO pieces.

the friendly blocks-based interface.

5. ACKNOWLEDGMENTS
We thank Ben Helm, ZoltÃ ↪an StÃ ↪al, Neekon Vafa, Isobel

Redelmeier, and John Cole for their assistance in developing
BlockyTalky.

6. REFERENCES
[1] P. Blikstein. Travels in troy with Freire: Technology

as an agent for emancipation. Paulo Freire: The
possible dream. Rotterdam, Netherlands: Sense, 2008.

[2] D. Boyd. It’s Complicated: The Social Lives of
Networked Teens. Yale University Press, New Haven,
CT, USA, 1st edition, 2014.

[3] L. Buechley, M. Eisenberg, J. Catchen, and
A. Crockett. The lilypad arduino: using computational
textiles to investigate engagement, aesthetics, and
diversity in computer science education. In Proceedings
of the SIGCHI conference on Human factors in
computing systems, pages 423–432. ACM, 2008.

[4] A. Collins, J. Brown, and S. Newinan. Cognitive
apprenticeship: Teaching the craft of reading, writing,
and mathematics. In Knowing, learning, and
instruction: Essays in honor of Robert Glaser, pages
453–494. Lawrence Erlbaum Associates, Inc., 1989.

[5] C. Kelleher, R. Pausch, and S. Kiesler. Storytelling
Alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 1455–1464. ACM, 2007.

[6] G. Ladson-Billings. But that’s just good teaching! the
case for culturally relevant pedagogy. Theory into
practice, 34(3):159–165, 1995.

[7] C. D. Lee. Culturally responsive pedagogy and
performance-based assessment. Journal of Negro
Education, 67(3):269–79, 1998.

[8] M. Madden, A. Lenhart, M. Duggan, S. Cortesi, and
U. Gasser. 2012 teens and privacy management
survey. Technical report, Pew Research Center and
The Berkman Center for Internet and Society at
Harvard University, October 2012.

[9] M. Madden, A. Lenhart, M. Duggan, S. Cortesi, and
U. Gasser. Teens and technology. Technical report,
Pew Research Center and The Berkman Center for
Internet and Society at Harvard University, March
2013.

[10] S. Papert. Mindstorms: Children, computers, and
powerful ideas. Basic Books, Inc., 1980.

[11] R. D. Pea. The social and technological dimensions of
scaffolding and related theoretical concepts for
learning, education, and human activity. Journal of
the Learning Sciences, 13(3):423–451, 2004.

[12] K. Peppler. Media arts: Arts education for a digital
age. Teachers College Record, 112(8):2118–2153, 2010.

[13] A. Repenning and A. Ioannidou. Broadening
participation through scalable game design. In
Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’08, pages
305–309, New York, NY, USA, 2008. ACM.

[14] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
programming for all. Communications of the ACM,
52(11):60–67, 2009.

